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Abstract-Using the method of self-similar solutions an exact fundamental solution to the equation 
of convective diffusion is obtained for the case of separated flow over a surface when the F’randtl 
number is very large compared to unity. The driving force for diffusion is assumed to change abruptly 
from zero to unity at the streamwise location x = f and an arbitrary distribution of the velocity profile 
curvature parameter (P~/ay~)~,~ is allowed through the use of the von Mises transformation. An inte- 
gral method using a cubic polynomial for the dimensionless concentration profile is shown to predict 
the correct functional form of the transfer coefficient but overestimates its magnitude by 3.3 per cent. 
This is more than twice the error of a corresponding integral method solution to the nonseparating flow 
problem, suggesting once again that for a given number of terms in the approximating polynomial the 
accuracy of profile methods in general deteriorates as one nears separation of the velocity boundary 
layer. The exact solution is specialized to the case of separated laminar wedge flow and transfer co- 
efficients are derived for both step-change and power-law driving force distributions. These results 
have been used to compare the effect of pressure gradient (wedge variable) on the sensitivity of local 
transfer coefficients to streamwise gradients in driving force. In the limit [+ 0 results for the step 
change in driving force are shown to reduce to the proper “isothermal” coefficient at very large 

m, 

Nu, 

PY 

Pr, 

Prandtl numbers. 

NOMENCLATURE 4, parameter in equation (57); 
local concentration (mass fraction) of Re, Reynolds number ; 
transferred species, equation (6); & exponent in power law u(x, Y) = 
Fick diffusion coefficient, equation (6) ; g(x) - YSG 
nondimensional stream function, u, x-component of fluid velocity; 
equation (49) ; V, Y-component of fluid velocity; 
function in velocity profile law u(x, Y) v* characteristic velocity, equation (4), 
= g(x) ‘Y”; or “friction” velocity; 
rate of diffusional transfer per unit x, distance in streamwise direction along 
time and area, equation (7); solid surface ; or argument of incom- 
driving force gradient parameter, plete gamma function; 
equation (58); x+, stretched streamwise distance, equa- 
inviscid velocity gradient parameter, tion (16); 
equation (49) ; Y, distance normal to solid surface. 
local Nusselt number based on dis- 
tance x, equation (9); Greek symbols 
parameter in equation (57); 
Prandtl number (= v/D for diffusion) ; 

a, 

_ B, 
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parameter in incomplete gamma func- 
tion, equation (30); 
wedge parameter, 2m/(l + m); 
gamma function of argument a ; 
incomplete complementary gamma 
function of argument x with parameter 
a, equation (30); 
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diffusion boundary layer thickness, 
equation (39) ; 
convection thickness, equation (36); 
similarity variable, equation (23) ; 
concentration excess, c ~ clo; 
normalized concentration excess 
(c - G.JJ)/(C, - cw) ; 
dummy (integration) variable or trans- 
formation factor ; 
dynamic viscosity of fluid; 
kinematic viscosity of fluid, = p/p ; 
x-position of step change in driving 
force ; 
absolute (mass) density of fluid; 
shear stress, equation (1) ; 
stream function, equation (10) ; 
“stretched” stream function, equation 

(17). 

Subscripts 

e, at outer edge of boundary layer; 
iso, corresponding to constant diffusional 

driving force ; 
H’, at wall (Y = 0) ; 
X, based on distance x; 

Y, partial derivative with respect to y at 
constant x; 

y = 0, at wall. 

1. INTRODUCTION 

WHEN treating forced convection problems in 
which the driving force for diffusiont or heat 
conduction varies from point to point along the 
surface, linearity of the convective diffusion 
equation enables the desired solution to be 
written down if a so-called “fundamental” 
solution is available [l, 21. The latter solution is 
that pertaining to a physical situation in which 
the driving force for diffusion or heat transfer 
abruptly changes from zero to unity at some up- 
stream point along the surface. While many 

t Throughout the present paper reference to diffusion 
should notbe taken to imply net transfer across the fluid/ 
solid interface. While the following discussion is readily 
extended to this case, the solutions presented strictly 
apply to the case of negligible interfacial mass velocity, 
as encountered, for example, at the surface of imperme- 
able catalytic solids in flow systems, or simply when the 
net mass-transfer rate is sufficiently small. 
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such “step function” solutions must of necessity 
be obtained by approximate analytical methods, 
[3, 41, or directly from experiment [5, 61 several 
exact fundamental solutions can be obtained 
analytically using the method of similar solutions. 
This is particularly true for laminar flows at 
very large Prandtl numbers when the velocity 
profile within the diffusion boundary layer as- 
sumes a simple analytical form. Examples of 
such solutions are provided by the work of 
Lighthill [7] Acrivos [8] and Kestin and Persen 
[9]. These authors have treated large Prandtl 
number flows for which the streamwise velocity 
in the diffusion boundary layer may be accurately 
replaced by the linear law 

where TV is the local shear stress, &a~/~y)~=~ at 
the surface. As pointed out by Spalding [lo] 
such solutions in fact apply to turbulent boun- 
dary layer flows as well, since in the asymptotic 
extreme Pr --f a the diffusion boundary layer is 
fully submerged within the laminar sublayer. 
However, it is well known that this representa- 
tion of the velocity field breaks down as one 
approaches the condition of zero shear stress 
(,near separation) since in this region, the next 
term in the Taylor series expansion 

begins to dominate the first. When this is the 
case the very general and asymptoticahy exact 
fundamental solutions referred to above become 
inapplicable and one is led to inquire if an exact 
fundamental solution can be obtained in the 
nearly separated flow regime. While perhaps of 
less practical importance, solutions in this ex- 
treme are of great theoretical interest since, 
being exact, they supply test cases and useful 
asymptotes to which certain related problems in 
heat- and mass-transfer theory must conform. 
Moreover, closed form exact solutions are valu- 
able in that they reveal functional dependences 
frequently obscured in available numerical solu- 
tions. With this in mind we have investigated the 
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extreme in which the velocity field near the sur- 
face can be well represented by the quadratic 
term of (2), viz. 

1 8% 
u(x, y) * - - 

( 1 2 ays 1/=e * y2. (3) 

This case has been dealt with summarily by 
Acrivos [8], who has provided transfer coefficient 
expressions for velocity profiles of the general 
form u(x, y) = g(x) * ys. In the present paper the 
important special case s = 2 is explored in greater 
detail, with emphasis on the similarities which 
exist between the separated and nonseparated 
flow solutions. Thus, the discussion of Section 2 
will instead parallel Kestin and Persen’s [9] 
treatment of the s = 1 case, and, with suitably 
defined variables, it will be shown that the results 
can be cast in a form analagous to those govern- 
ing the nonseparated flow problem. In this re- 
gard a particularly useful variable is the “charac- 
teristic velocity” distribution v,(x) defined by 

v*(x) _= [; &JJ3. (4) 

As will be seen v,(x) plays a role similar to the 
familiar “friction” velocity U,(X) = [~&)/p]~/~ 
in the nonseparated flow problem. 

A closed form solution is first given for the 
case in which the characteristic velocity U,(X) may 
have an arbitrary distribution along the surface, 
and in Section 4 this result is specialized to the 
case of a laminar wedge flow with both step 
function, and power law driving force distribu- 
tions. When the step change occurs at the lead- 

ing edge of the surface (f = 0) we recover the 
asymptotically exact Nusselt number result 

Nurso/z/(Rez) = O-224468 PC4 (5) 

in agreement with the accurate tabular solutions 
recently given by Evans [ll] for the extreme of 
very large Prandtl number. In Section 3 the 
exact solution for arbitrary v,(x) is compared 
with an integral method solution of the same 
problem, and the results are compared with a 
similar set of calculations for the nonseparated 
flow case. 

2. ANALYSIS AND EXACT SOLUTION 

We consider the physical configuration 
sketched in Fig. 1 and adopt as our starting 
point the constant property steady state diffusion 
equation for laminar boundary layer flow in 
two dimensions, viz. 

ac ac a% 
uaX+v-==D7 aY aY 

where c represents the mass fraction of a trace 
component present in the carrier fluid.7 In 
regions where the diffusional driving force 
6, = ce - cw is constant the normalized con- 
centration excess 0 - S/Se will satisfy this same 
equation, where the coefficient D represents the 

7 As is well known, the diffusion of heat is governed 
by mathematically identical laws. The solutions given 
herein therefore apply equally well to the calculation of 
heat transfer in separated flow at very large Prandtl 
numbers. This fact has inlluenced our subsequent choice 
of nomenclature. 

FIG. 1. System co-ordinates and notation. 
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pertinent diffusion coefficient. At the stream- 
wise station x = .$ the driving force 6, G ce - cW 
abruptly changes from the value zero to unity 
and remains constant thereafter, so that the 
diffusion boundary layer (shown dashed) itself 
grows under the influence of a constant driving 
force & = constant = 1 (for x > [). Let us 
now focus our attention on the corresponding 
rate of transfer, -j”(x, 0; 0, to the surface 
downstream of the step change and therefore 
examine, in the absence of net mass transfer, the 
normal gradient a@/@ evaluated at y = 0. 
In what follows this gradient will be written 
0,(x, 0; 6) as a reminder of its dependence on 
both the position x and the upstream location 
of the step change. Once one has obtained the 
fundamental solution 0,(x, 0 ; 5) transfer rates 
can be computed from the linear law 

- f’(x, 0; E) = Dp&? * 0,(x, 0; ‘f) (7) 

where, in this instance, 6, = 1. As discussed by 
Rubesin [l], Tribus and Klein, [2] et al., transfer 
rates for arbitrary distributions of driving force 
I%(X) can then be calculated from the super- 
position law 

-_i”(x, 0) = Dp s-i=, @,(x, 0; t) * dfMt1 (8) 

where the fundamental solution discussed in the 
present paper appears as a kernel and integration 
is taken in the Stieltjes sense. It should be ob- 
served that the fundamental solution may also 
be presented in the form of a Nusselt number 
based on the distance x; viz. 

Nu 

X 
~ 1 _i’k 0; 0 

DP&/x 
- =x*O,(x,O;5). (9) 

When E --f 0 we should therefore recover the 
“&-compositional” (constant driving force) 
value of the Nusselt number, abbreviated here- 
after as NucSO. 

As in the case of nonseparated flows the pre- 
sent problem may be solved by use of the method 
of similar solutions. This technique, suggested 
by the absence of a characteristic length govern- 
ing the development of the diffusion boundary 
layer allows the problem to be reduced to the 
solution of a simple ordinary differential equa- 
tion. One thus anticipates a “universal” profile 
O(T) from which the fundamental solution 

Oy(x, 0; [) can be calculated using the value 
of O’(0) and the transformation properties of 
the appropriate similarity variable 7(x, y). 

This may be carried out as follows. First the 
convective diffusion equation is reduced to the 
form of a variable property transient “conduc- 
tion” equation by invoking the von Mises 
transformation, i.e. by replacing the independent 
variable y with the stream function U(x, y), 
defined here by the relations? 

aY aYJ 

l4 = v 5 u = --v ax. (10) 

In this way one obtains the partial differential 
equation 

ao 1 a uao 
aX=Pi'FP vaY i- ~--I 

(11) 

where Pr represents the diffusional Prandtl 
number: v/D and the operator a/ax now im- 
plies partial differentiation with respect to x, 
holding the stream function !P constant. At this 
point the local velocity u appearing on the right- 
hand side of (11) must be expressed in terms of 
x and Y alone, making use of the quadratic 
law [cf. (3)] for nearly separated flows at large 
Prandtl numbers. In terms of the characteristic 
velocity U,(X) defined above this profile law 
may be cast in the form 

u = v*(x) 
u*(x) Y 2 L 1 V (12) 

which, in turn, implies the stream function 
dependence 

(13) 

Therefore in (I 1) the local velocity u(x, Y) can 
be expressed 

u(x, Y) = c*(x) * (3Y)2’3. (14) 

t The factor Y (kinematic viscosity) is introduced in the 
above equations to render the stream function Y dimen- 
sionless. 

$ In the Western literature this property group is 
usually called the Schmidt number. This writer prefers 
the usage common in the Russian mass transfer literature 
since it does not obscure an obvious analogy. Similarly, 
we have used the symbol NU in place of the equivalent 
Sherwood number. 
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Inserting this expression into (11) yields the boundary conditions at 7 = co i.e. (19, 20, 21) 
partial differential equation are replaced by the two statements 

Inspection of this result reveals that consider- 
able formal simplification is possible by intro- 
ducing the new “stretched” independent vari- 
ables 

(16) 

yy’ E 3-l/2 pp,a p, (17) 

Doing this we are left with the partial differential 
equation 

which must be solved subject to the boundary 
conditions 

0 = 1 for x+ = 0 ; all Y+ 2 0 (19) 

0 = I for Yi = co ; all x+ 2 0 (20) 

0 = 0 for Y+ = 0 ; all x+ & 0. (21) 

As anticipated, a solution to the above boundary 
value problem can be constructed such that the 
xf and Yf dependence of the O-field is contained 
in single independent variable 17 where a satis- 
factory choice of 71 is found to bet 

71 G (9~16)“4(x*)-1’4(Y+)“3. (22) 

In terms of the original independent variables of 
the problem this is equivalent to the definition 

With any choice of this general form the boun- 
dary conditions at x + = 0 and Y+ = co become 

--- 
TThis property can be arrived at by noticing that (18) 
is invariant under the co-ordinate transformation 
xf -+ Xx+, !P --f PIa ?P+. In view of this fact and the 
form of the boundary conditions (19, 20, 21) the solution 
@(xc, IF+) must also be invariant under this transforma- 
tion. This condition will certainly be met if 8 depends 
only upon a com~mation of the independent variables 
x+ and P+ which is itself invariant under this trans- 
formation. Equation (22) represents one such combima- 
tion. 

@(co) = 1, (24) 

O(0) = 0. (25) 

That a solution of the form O(T) exists may be 
verified by subjecting (18) to the further co- 
ordinate transformation (xf, Y+) --f (x+, 7). 
In this way one finds that @(xi, 3) must satisfy 
the eq~tion 

1 aa@ ao 
(26) 

where the operator a/ax+ now implies partial 
differentiation with respect to xf at constant 9. 
Inspection of (26) reveals that a solution of the 
form O(T) indeed exists, where O(r) must satisfy 
the linear second order ordinary differential 
equation 

0” + 4*1”0’ = 0, (27) 

This equation is first order in the first derivative 
0’ and its solution is readily written in terms of 
we11 tabuIated functions. Integrating twice, 
one obtains the expression 

(28) 

For diffusional transfer calculations the deriva- 
tive 0’ evaluated at v = 0 is of interest. Equation 
(28) implies 

O’(0) = [s,” exp C-73 - dT]-I. f29) 

The inde~ite integrals appearing above. are 
closely related to one of the incomplete gamma 
functions [12, 131 

y(a, x) E Jz exp (-A) - ha--’ dh. (30) 

Tabular values of this function are provided in 
the work of Pearson [33]. In terms of y(a, x) the 
universal profile O(v) may be expressed 

(31) 

where ~(1/4, co) = .Z’(l/4) = 3.62560991 [14]. A 
graph of this function is given in Fig. 2 and com- 
pared with the fiction r(1/3, ~~)~~~1~3,00) which 
arises in the theory of nonseparated boundary 
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FIG. 2. Universal diffusion boundary layer profiles. 

layers? [9]. For small values of 7 we have the nonseparated flow at large Prandtl numbers, 
expansion viz. [9] 

1 
+408+116-. . . 

> 
(32) 

so that O’(0) = 4fr(1/4) = 1~103262652. It is then 
possible to find 0,(x, 0; .$) from O’(0) and the 
transformation properties of the similarity 
variable, since 

Carrying out the indicated operations we find 

@y(x, 0 : $2 = 

which constitutes the relation sought. This result 
should be compared with its counterpart for 

t For this problem Kestin and Persen [9] used a 
similarity variable which is proportional to the cube of 
our variabfe 7. This accounts for the infinite value of 
o’(0) in their Fig. 2, which is removed in their calculation 
of 6, by the corresponding singularity of (a~/$&=,,. 

0,(x, 0 ; f) = 

It should be remembered that in the latter case 
the characteristic velocity L’,(X) is the “friction 
velocity” [~~(x)/p]l’~ whereas in the former u+(x) 
is given by (4). It is seen that in terms of these 
respective characteristic velocities the funda- 
mental solutions are strikingly similar in struc- 
ture. 

From a theoretical point of view application of 
(34) to the well studied ease of separated laminar 
wedge flow immediately comes to mind. Such 
an application not only provides results of greater 
generality than those available in the form of 
existing similar solutions, it also provides a 
valuable check on the mathematical steps pre- 
ceding (34). For example, in the limit 6 + 0 we 
should be able to recover the “isothermal” 
value Nus,tso of the local Nusselt number for 
separated wedge flow at very large Prandtl 
numbers. However, before discussing this class 
of applications, we digress for a moment to 
illustrate the applicants of the well-known 
integral (profile) method to the problem afready 
treated exactly in this section. 
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3. COMPARISON WITH AN APPROXIMATE 

FUNDAMENTAL SOLUTION; THE INTEGRAL 

METHOD 

Having an exact fundamental solution for the 
case of separating flow it is of interest to examine 
the success of integral methods when applied to 
the same problem. For instance, it is known 
that the von Karman-Pohlhausen approach with 
a cubic polynomial O-profile predicts the non- 
separating Bow fundamental solution for Pr $ 1 
to within 1.5 per cent of the exact value [15], and 
correctly represents its functional form. We 
therefore anticipate that integral methods will 
be able to reproduce the functional form of (34) 
however, it remains to be seen how well they 
will predict the absolute value of the multiplica- 
tive constant. 

Integration of (6) from y = 0 to ,v = co pro- 
vides a relation for the growth of the “convec- 
tion” thickness A, defined by 

A, ES 
s 

; ;, [ 1 - 01 * dy. (36) 
c 

This integral relation for the boundary layer can 
be cast in the general form (e.g. [16]) 

A, _ 2!!!! !?f! 

ued; d 
- 2 Y dx (In 8,) . (37) 

In applying this relation to the present problem 
the diffusional driving force is constant (at the 
value unity) for x > [ so that the last term of 
(37) can be dropped. Making use of the definition 
of the local Nusselt number the simplified 
integral equation may be written in the compact 
form 

(38) 

In accordance with the von Karman-Pohl- 
hausen procedure we first introduce a functional 
form for the profile @(y/S) where 6 represents the 
yet undetermined thickness of the diffusion 
boundary layer. Regardless of the choice of 
functional form it is dimensionally clear that 
O,(O) cc 6-l. The integral equation (38) then be- 
comes an ordinary differential equation for the 

growth of the diffusion boundary layer thickness 
6(x; 0 downstream of the point x = 6 or, al- 
ternatively, a differential equation for the decay 
of the non-dimensional transfer coefficient 
Nu(x; [). This will be illustrated here for the 
case in which the local O-field is represented by a 
cubic polynomial, viz. 

0 =ic) --k($” for0 <y/S < 1. (39) 

This functional form is simple to work with, 
has zero slope at y/S = 1, and satisfies the two 
most important conditions of the problem, i.e. 

0(x, 0; 5) = 0 (40) 

0(x, 6; 5) = 1. (41) 

It is clear from this choice that 0,(x, 0; 0 and 
S(x; 5) are related by 

3 1 
@&,o;[)=2 ‘8 

or, equivalently [cf. (9)] 

(42) 

Nu(x;f)=;.;. (43) 

To parallel the development of the preceding 
section we assume the diffusion layer grows in a 
region within which the velocity profile u(x, y) is 
well represented by the quadratic law given by 
(12). Then, using its definition, the “convection 
thickness” A, may be evaluated as 

2 

i;X2 [1 - (;A -;A3)] dh. (44) 

Performing the indicated operations and elimin- 
ating the thickness 6 in favor of the nondimen- 
sional transfer coefficient, Nu, we find 

a 
. %f3 (45) 

Therefore, the integral equation, (38), can be 
written 

Nu = x * Pr * d”, [&(y$)“. A]. (46) 
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Differentiation and rearrangement yield the 
following Bernoulli equation for iVu(x; 5) 

= -;(;)A(?)-“;. Nu5. (47) 

Therefore, this equation becomes linear in the 
dependent variable (Nu)-~, having the integrat- 
ing factor (u,x/v)~. Subject to the condition 
Nu(5; 5) = co this linear differential equation 
can be integrated and solved for Nu(x; 5). There 
results 

l/4 
p+a . u* b>x 

Y 

Keeping in mind (9), one notices that (48) is 
identical in form to (34), differing only in the 
value of the multiplicative constant. Evaluation 
of the fourth root shown in (48) yields 
05698767642 as compared with 2/r(1/4) = 
0551631326. Thus the integral method using a 
cubic polynomial profile reproduces the func- 
tional form of the exact solution but overesti- 
mates absolute values by some 3.3 per cent. This 
error is more than twice that obtained in the 
nonseparated flow case, suggesting once again 
that for a given number of terms in the approxi- 
mating polynomials the accuracy of profile 
methods will in general deteriorate as one 
approaches the condition of separation. 

4. SPECIALIZATION TO SEPARATED WEDGE 

FLOW 

We return now to the exact fundamental 
solution and its specialization to the case of 
separated laminar wedge flow. Separated wedge 
flow is a special case of the class of similar solu- 
tions to the steady flow laminar boundary layer 
equations for free stream velocity profiles of the 
power law family ue a xm where m is a constant. 
For this family exact solutions to the velocity 
field are available in terms of a well tabulated 

nondimensional stream function? ,f and its 
derivatives [17, 181, where 

,f $. ($ ,)l’z (49) 

is a function of the similarity variable 

The parameter fi appearing in these transforma- 
tions is a “wedge parameter” related to the 
exponent m by /3 z 2m/( 1 + m). For the singular 
value /3 = -0.198838 (corresponding to m = 
-0.09042867) the laminar velocity boundary 
layer is separated (Q = 0) everywhere. Since the 
normalized fluid velocity U/U, is simply given by 
f’, where the prime denotes differentiation with 
respect to the similarity variable (50), separation 
corresponds to the case f”(0) = 0. From the 
definition of the characteristic velocity v,(x) 
and the similarity variables above it is seen that 
v,(x) is related to the corresponding magnitude 
off”‘(O); indeed, for the case of separated wedge 
flow we explicitly find 

1 

I 

l/3 

G(x) = %&-d* m7). Re,-' *f"'(O) 

(51) 

where /I = -0.198838 and S”‘(0) = 0.198838 
WY. 

4.1 Step change in driving force at x = 5 
Inserting this v*(x) distribution into the general 

expression, (34), gives the explicit Nusselt 
number result: 

1 . 4 f “‘(0) u4 

[ 1 __- 1/o - 8) F(l/4) 41 

pr1/4 [I _ (,)'z'3"m+1'] --114a (52) 

If one now introduces the appropriate numerical 
values of /3, m and f”‘(0) for separated laminar 
wedge flow (52) reduces to 

f The stream function ‘Y appearing in (49) is that 
defined by (10). The product VY may be identified with the 
stream function given, for example, by Evans [ll] and 
Spalding [18]. 
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Nu~~Re~ = O-224468 P+[l - (~~x)~**~~~~]-~‘~ 

(53) 

which reduces further to the form of equation 
(5) when .$ + 0. For this special case the results 
given above are in agreement with the accurate 
solutions recently reported by Evans [ll]. The 
latter work further suggests that in practice (52) 
may be extended to lower Prandtl numbers by 
replacing r(l/4) with the asymptotic series 

0~084053 1 0*00590720 
T(lf4) + pr- - --- 

Pr2 

0.~105923 _ ___~ 
W 

+ O(Pr-“). (54) 

4.2. Power law driving force distribution 
The superposition law expressed by (8) can be 

combined with the results of the previous section 
to derive an expression for the effect of power 
law driving force distributions on the local 
transfer coefficient. Thus we imagine that J&(x) 
obeys the power law 8&) ot XI where t is some 
positive or negative constant. Introducing the 
following kernel into (8) 

one thereby obtains the result 

DPMx) 
-j”(x) = Nuts0 x- 

/ f:, [I - ~fwm+~q-1~4 AZ-1 dh_ (56) 

The integral appearing here can be evaluated in 
terms of the Gauss factorial function with the 
help of the relations 112’) 

where p, q > 0. 
Carrying this procedure through, the result 

for the corresponding transfer coefficient ratio 
can be written 

Nu --= 
&80 (58) 

where m = -0.09042867. It is of interest to 
compare this result with its counterpart for non- 
separated wedge flows. In the latter case it can 
be shown that 

1-11 
NU [ (3,4)(~ + 1) ’ Ii I 3 ’ 

-- -_ 
fvi(&n r I 111 * 

(59) 

These explicit relations can be conveniently used 
to evaluate the effect of the pressure gradient 
(wedge) parameter m on the sensitivity of local 
transfer coefficients to streamwise gradients in 
diffusional driving force. Results are summarized 
in Table 1 and Fig. 3. Also included for compari- 
son are the numerical results of Levy [19] 
calculated by a finite difference method for the 
case Pr = 10. It is seen that small pressure gra- 
dient Bows are much more sensitive to steam- 
wise gradients in diffusional driving force than 
strongly accelerated flows. For instance one can 
compare the magnitudes of 1 required to cause 
the local heat flux to vanish, i.e. to “separate” the 
O-profile, despite the presence of a non-zero 
local driving force. This is done by noting when 
the argument of the factorial functions in the 
denominators of (58) and (59) take on the values 
- 1, since (- l)! = co. Regardless of which 
formula is used one obtains Nu/NutsO = 0 for 
I = - (1/2)(m + 1) = -(2 - /3)-r in agreement 
with the results of Levy [19]. Since the requisite 
gradient p~ameter I is observed to become larger 
in absolute value as pn increases, strongly ac- 
celerating boundary layer flows (large m) are far 
less sensitive to streamwise gradients in driving 
force than are small pressure gradient flows 
(m w 0). In the separated flow case (58) reveals 
that the local transfer coefficient will vanish 
when the parameter I takes on the value 
-0.454786. This should be contrasted with the 
case of plane stagnation flow (m = 1) for which 
the value I = - 1 is necessary to cause the local 
transfer coefficient to vanish. 
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Table I. Calculated values of Nu,lNu, Eao; comparison 0J“analyticai results for Pr :$+ 1 with l.euy’.s 
numerical results7 for Pr = 10 

j3 =I m-O.198838 ! 8-O fir- I 
I 

Equation (58) Levy? 
-- -1 

I 
Equation (59) Levy? ’ Equation (59) Levy.1 

- I$0 0~0000 O+OOO 
---0.75 0.4312 0.3159 
-0.50 0~0ooo OGOOO 0.6845 06294 
--0.25 0.7040 0.6707 ! 0.6845 0.6344 0.8624 O-8406 

0.00 lW30 1WOO ( 14ooo 1GOOo I I.0000 I .oOOO 
0.25 1.1693 1.1795 1.2092 1.2268 i 1.1129 1.1283 
o+o 1.2906 1.3057 I.3689 1.3961 I.2092 1.2364 
0.75 1.3856 1%00 

’ 
I.2937 

i+IO I~4649 I .4862 1 1.6123 16476 I ,3689 1.4137 
I.50 I ,594o I .8000 1~5000 
2.00 I .6978 I.7258 i 1.9556 1.9923 / 1.6123 I .6788 
3,OO 1.8616 I ,8929 2,209 1 2.2417 F 1%-JOO I .8802 
4.00 I.9910 2,0255 2,4151 2.4394 / 1.9556 2.045 I 

I ..__-- -- -_._ I..... --_ --. - I .?Y~.~-_.:~~ _ -.___. ._ -_I ..-.. 
$ Calculated for Fr = 10 from four place tables given by Levy 1191. 

l LEVY (195l),j3.0, PPIO 

o lbld. ,8=I,Pr=lO 

-0+98838,Pr=iO 

-1-O 0.0 2.0 

FIG. 3. Sensitivity of transfer coefficient to streamwise gradients in diffusional driving force for three values 
of the Hartree wedge (pressure gradient) parameter. 
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5. CONCLUDING REMARKS 

By analogy with the corresponding non- 
separated flow solution, two remarks should be 
made concerning the restrictions placed on the 
present solution. The restriction to very large 
Prandtl number insures that the concentration 
diffusion boundary layer will remain thin com- 
pared with the velocity boundary layer thereby 
justifying the use of a simple velocity profile, 
(3), within the diffusion layer. If the Prandtl 
number is not large the solution is still valid 
for sufficiently small values of x+ [cf. (16)] since 
the diffusion layer is certainty “thin” initially. 
Thus exact solutions for arbitrary Prandtl 
number should tend to the present solution for 
sufficiently small x+. 

Secondly, in the extreme Pr -+ cc or x+ -+ 0 

the solution may also be applicable to the case 
of turbulent flow within the velocity boundary 
layer provided Iaminar sublayers exist for 
separated turbulent boundary layer profiles. If 
this is the case then any genera1 solution for the 
tubulent case should become asymptotic to 
(34) for su~cie~ltly small values of 29. 
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R&II&-En utilisant la m&hode des solutions “& similitude interne” on &ablit une solution fonda- 
mentale exacte de l’equation de diffusion convective dans le cas d’un &coulement sur une surface, 
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avec nombre de Prandtl tres suptrieur a l’unite. On suppose que les forces de diffusion varient brutale- 
ment ii partir de zero, a l’abscisse x = 6, la transformation de von Mises permet de tenir compte d’une 
distribution arbitraire du parametre de courbure du profil de vitesses (a’%j+Q,,. Une methode 
integrale, utilisant une forme polynomiale du 3” ordre pour le profil de concentration sans dimensions, 
aboutit a une forme correcte du coefficient d&change mais dorme des valeurs trop &levees de 3,3 %, 
c’est-a-dire plus de deux fois l’erreur dune solution dorm&e par la methode integrale dans le cas dun 
ecoulement non decohe. Ceci suggere une fois de plus que, pour un nombre don& de termes dans 
l’approximation polynomiale, la precision des methodes de profils baisse au voisinage du decollement 

de la couche limite. 

Zusummenfassung-Mit Hilfe der Methode lhnlicher Losungen erhalt man ftir sehr grosse Prandtl- 
zahlen eine exakte Fundamentallosung der Gleichung der konvektiven Diffusion fur Oberllachen- 
stromung in der N&he der Ablosung. Die treibende Kraft der Diffusion sol1 sich plotzlich von Null an 
der Stelle x = 5 in Stromungsrichtung Lndern, wobei durch Bentitzung der von Mises-Transformation 
eine beliebige Verteilung des Krtlmmungsparameters des Geschwindigkeitsprofils (ZJ~U/ZJ~~),,, zullssig 
ist. Eine Integralmethode, die dem dimensionslosen Konzentrationsprofil ein kubisches Polynom 
zugrundelegt, ftihrt auf die korrekte Funktionsform des Wlrmetibergangskoethzienten, gibt aber 
seine G&se urn 3,3 Prozent zu hoch an. Dieser Fehler ist mehr als doppelt so gross als der einer 
Losung nach einer entsprechenden Integralmethode fiir die Stromung ohne Abltisung und zeigt 
wieder einmal, dass ftlr eine gegebene Anzahl von Gliedern im Nlherungspolynom die Genauigkeit 
der Profilmethoden im allgemeinen abnimmt bei Annlherung an die Ablosung. Die exakte Losung 
beschrlnkt sich auf den Fall laminarer Keilstromung in der Nahe der Ablosung; die Ubergangs- 
koeffizienten sind sowohl fur schrottweise Anderung als such fiir Verteilung der treibenden Kraft 
nach einem Potenzgesetz abgeleitet. Mit diesen Ergebnissen liess sich der Einfluss des Druckgradienten 
(Keilvariable) auf die Empfindlichkeit des ortlichen Ubergangskoeffizienten mit den Gradienten der 
treibenden Kraft in Stromungsrichtung vergleichen. Im Grenzfall sind die Ergebnisse fiir schrittweise 
Anderung der treibenden Kraft auf den entsprechenden “isothermen” Koeffizienten fiir sehr grosse 

Prandtlzahlen reduzierbar. 

hIHOTRI(HJ+~~OJIJ’YeHO C IIOMOIIJbPJ MeTOAa IIOfiO6HbIX peIIleHIl& T09HOe $yH~aMeHTaj?bHO? 

peIIIeHHe ypaBHeHHFl AJIFI KOHBeKTHBHOH AM@$y3IIM AJIX CJIyWR OTpbIBHOl'O Te4eHI4H II8 

IIOBepXHOCTRIIpll WCJIe npaHATJIR3HaYHTeJIbHO IIpeBbJlUalOIIJeM e~%fHPI~y. npenIIOJIaraeTCfI, 

~TOBeJIElYllHa6e3pa3MepHOfiKOH~eHTpa~lfllBHe3aIIHO H3MeHIIeTCHBTO'IKeX = ~OTHyJIR 20 

eAHHqbI H q~o pacnpeJreneane napabrerpa (@u/@~)~=~ ICPHBHSH~I np01@1n~ CK~~~CTM 

OIIpeAeJIReTCfI C IIOMOIl&blO IIpeO6pa30BaHIiH @OH Myrseca. nOKa3aH0, 4TO MHTel'paJIbHbIH 

MeTOR, HCIIOJIb3yIoIIJ~Ii Ky6WIeCKLlti ItOJIllIIOM RJIFI 6e3pa3MepHOI'O IIpO@iJIH KOHqeHTpaqHH, 

OIIpeAeJIReT IIpaBIUbHyKI @yHK~lZOHaJIbHyIO @OpMy KO3@$I~I&MeHTa MaCCOOGMeHa, II0 

3aBbIIIIaeT er0 BeJIWiHHy Ha 3,3%. 3TO B ABa pa3a IIpeBOCXOAIlT OIUH6Ky COOTBeTCTByEO~eI70 

peLUeHIlR C IIOMOIQbIO HHTerpaJIbHOrO MeTOn AZIfI 3aAaWJ 6e30TpbIBHOrO TeqeHLIH. HpH 3TOM 

IIpPIHHMaeTCfI, qT0 AJIFt AaHEIOrO 'ILIC.?a 4JIeHOB aIIIIpOKCMMMpyIO~er0 IIOJIHHOMa TOWIOCTb 

yKa3aHHbIXMeTOAOB,B 06IQeM,yXy~IIIaeTCRB6JIH3IJ OTpbIaCKOpOCTHOrO IIOI'paHWiHOIYO CJIOA. 

TosHoe PeIIIeHKe IIpHMeHeHO K CJIyqaM OTpbIBHOrO 06TeKaHWI KJIIiHa JIaMHHapHbIM IIOTO- 

KIM . ICoa$@q4eHTbI nepeuoca sbrseAena uau AJAR crynea4aroro pacnpenenerrnn ~sn~ymen 
CIUIbI, TBK II AJIR CTeIIeHHOrO 3aKOHa ee II3MeHeHLIFI. Pe3yJIbTaTbI MCIIOJIb30BWIMCb XJIH 

CpaBHeHII~B~ll~H~~~pa~HeHTaAaB~eHI?R(paCTBOpK,?EIHa)Ha4yBCTBBTeJrbHOCTbJIOKaJIbHbIX 

K03@+lLJHeHTOB IIepeHOCa K I'paRLleHTaM ABI,I~y~e~ CIIJIbI (6eapasMepnon KOHqeHTpaqHH). 

n 3aKJIIOYeHwI IIOKa3aH0,YTO CTyneHqaToe m3MeHeHne gBmwyQet CAJIbI yMeHblIIaeT ACTGIH- 

IIbIti GA3OTepMII~eCKMtiZH KO3@@I~I~eHT IIepeHOCa IIpPl BeCbMa 6o;Ibmnx rIIICJIaX npaHATJIfI. 


