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Abstract—Using the method of self-similar solutions an exact fundamental solution to the equation
of convective diffusion is obtained for the case of separated flow over a surface when the Prandtl
number is very large compared to unity. The driving force for diffusion is assumed to change abruptly
from zero to unity at the streamwise location x = ¢ and an arbitrary distribution of the velocity profile
curvature parameter (8%u/8y*),_, is allowed through the use of the von Mises transformation. An inte-
gral method using a cubic polynomial for the dimensionless concentration profile is shown to predict
the correct functional form of the transfer coefficient but overestimates its magnitude by 3-3 per cent.
This is more than twice the error of a corresponding integral method solution to the nonseparating flow
problem, suggesting once again that for a given number of terms in the approximating polynomial the
accuracy of profile methods in general deteriorates as one nears separation of the velocity boundary
layer. The exact solution is specialized to the case of separated laminar wedge flow and transfer co-
efficients are derived for both step-change and power-law driving force distributions. These results
have been used to compare the effect of pressure gradient (wedge variable) on the sensitivity of local
transfer coefficients to streamwise gradients in driving force. In the limit ¢ — O results for the step
change in driving force are shown to reduce to the proper “isothermal” coefficient at very large
Prandtl numbers.

NOMENCLATURE q, parameter in equation (57);

¢ local concentration (mass fraction) of Re, Reynolds number;
transferred species, equation (6); s, exponent in power law u(x, y) =
D, Fick diffusion coefficient, equation (6); g(x) - y*;
f, nondimensional stream function, u, x-component of fluid velocity;
equation (49); v, y-component of fluid velocity;
g, function in velocity profile law u(x, ) Dy characteristic velocity, equation (4),
= g(x) - y5; or “friction” velocity;
J’ rate of diffusional transfer per unit X, distance in streamwise direction along
time and area, equation (7); solid surface; or argument of incom-
1, driving force gradient parameter, plete gamma function;
equation (58); xT, stretched streamwise distance, equa-
m, inviscid velocity gradient parameter, tion (16);
equation (49); ¥, distance normal to solid surface.
Nu, local Nusselt number based on dis-
tance x, equation (9); Greek symbols
P, parameter in equation (57); a, parameter in incomplete gamma func-
Pr, Prandtl number (= »/D for diffusion); tion, equation (30);
B, wedge parameter, 2m/(1 + m);
t This study was carried out under Contract AF-49 I'(a), gamma function of argument a;
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¥(a, x), incomplete complementary gamma

function of argument x with parameter
a, equation (30);



3, diffusion boundary layer thickness,
equation (39);

4,, convection thickness, equation (36);

7, similarity variable, equation (23);

D, concentration excess, ¢ — Cu;

o, normalized concentration  excess
(¢ — cw)(ce — cu);

A, dummy (integration) variable or trans-
formation factor;

i, dynamic viscosity of fluid;

v, kinematic viscosity of fluid, = p/p;

g, x-position of step change in driving
force;

Ps absolute (mass) density of fluid;

T, shear stress, equation (1);

Y, stream function, equation (10);

Y+, “stretched” stream function, equation
7).

Subscripts

e, at outer edge of boundary layer;

iso, corresponding to constant diffusional
driving force;

w, at wall (y = 0);

X, based on distance x;

b2 partial derivative with respect to y at
constant x;

y =0, at wall.

1. INTRODUCTION
WHEN treating forced convection problems in
which the driving force for diffusiont or heat
conduction varies from point to point along the
surface, linearity of the convective diffusion
equation enables the desired solution to be
written down if a so-called “fundamental”
solution is available (1, 2]. The latter solution is
that pertaining to a physical situation in which
the driving force for diffusion or heat transfer
abruptly changes from zero to unity at some up-
stream point along the surface. While many

+ Throughout the present paper reference to diffusion
should not be taken to imply net transfer across the fluid/
solid interface. While the following discussion is readily
extended to this case, the solutions presented strictly
apply to the case of negligible interfacial mass velocity,
as encountered, for example, at the surface of imperme-
able catalytic solids in flow systems, or simply when the
net mass-transfer rate is sufficiently small.
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such “‘step function” solutions must of necessity
be obtained by approximate analytical methods,
{3, 4], or directly from experiment [5, 6] several
exact fundamental solutions can be obtained
analytically using the method of similar solutions.
This is particularly true for laminar flows at
very large Prandtl numbers when the velocity
profile within the diffusion boundary layer as-
sumes a simple analytical form. Examples of
such solutions are provided by the work of
Lighthill [7] Acrivos [8] and Kestin and Persen
[9]. These authors have treated large Prandtl
number flows for which the streamwise velocity
in the diffusion boundary layer may be accurately
replaced by the linear law
.
x, yy = " (1)
u

where 7y is the local shear stress, u(éu/oy)y—o at
the surface. As pointed out by Spalding [10]
such solutions in fact apply to turbulent boun-
dary layer flows as well, since in the asymptotic
extreme Pr — oo the diffusion boundary layer is
fully submerged within the laminar sublayer.
However, it is well known that this representa-
tion of the velocity field breaks down as one
approaches the condition of zero shear stress
(near separation) since in this region, the next
term in the Taylor series expansion

cu 1 [P%u
u(x, y) = (d;)yzo YT (@z’)yw CyR
1 (3w 5
a7 (gj;g)yzo'y +... @

begins to dominate the first. When this is the
case the very general and asymptotically exact
fundamental solutions referred to above become
inapplicable and one is led to inquire if an exact
fundamental solution can be obtained in the
nearly separated flow regime. While perhaps of
less practical importance, solutions in this ex-
treme are of great theoretical interest since,
being exact, they supply test cases and useful
asymptotes to which certain related problems in
heat- and mass-transfer theory must conform.
Moreover, closed form exact solutions are valu-
able in that they reveal functional dependences
frequently obscured in available numerical solu-
tions. With this in mind we have investigated the
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extreme in which the velocity field near the sur-
face can be well represented by the quadratic
term of (2), viz.

1 /0%u
u(x, y) ~ 3 (W)y:o )R

This case has been dealt with summarily by
Acrivos [8], who has provided transfer coefficient
expressions for velocity profiles of the general
form u(x, y) = g(x) - »*. In the present paper the
important special case s = 2 is explored in greater
detail, with emphasis on the similarities which
exist between the separated and nonseparated
flow solutions. Thus, the discussion of Section 2
will instead parallel Kestin and Persen’s [9]
treatment of the s = 1 case, and, with suitably
defined variables, it will be shown that the results
can be cast in a form analagous to those govern-
ing the nonseparated flow problem. In this re-
gard a particularly useful variable is the “charac-
teristic velocity” distribution v, (x) defined by

As will be seen v.(x) plays a role similar to the
familiar “friction” velocity v.(x) = [rw(x)/p]**
in the nonseparated flow problem.

A closed form solution is first given for the
case in which the characteristic velocity v, (x) may
have an arbitrary distribution along the surface,
and in Section 4 this result is specialized to the
case of a laminar wedge flow with both step
function, and power law driving force distribu-
tions. When the step change occurs at the lead-

3)

4

ing edge of the surface (¢ = 0) we recover the
asymptotically exact Nusselt number result

Nuiso/r/(Rez) = 0-224468 Pri/* (5)

in agreement with the accurate tabular solutions
recently given by Evans [11] for the extreme of
very large Prandtl number. In Section 3 the
exact solution for arbitrary v.(x) is compared
with an integral method solution of the same
problem, and the results are compared with a
similar set of calculations for the nonseparated
flow case.

2. ANALYSIS AND EXACT SOLUTION
We consider the physical configuration
sketched in Fig. 1 and adopt as our starting
point the constant property steady state diffusion
equation for laminar boundary layer flow in
two dimensions, Viz.

o%c
oy?

oc ac

ug)—c—{—v?y:D

(6)
where ¢ represents the mass fraction of a trace
component present in the carrier fluid.t In
regions where the diffusional driving force
P¢ = ce¢ — cw is constant the normalized con-
centration excess ©® = /¢, will satisfy this same
equation, where the coefficient D represents the

t As is well known, the diffusion of heat is governed
by mathematically identical laws. The solutions given
herein therefore apply equally well to the calculation of
heat transfer in separated flow at very large Prandtl
numbers. This fact has influenced our subsequent choice
of nomenclature.

X=€

FiG. 1. System co-ordinates and notation.
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pertinent diffusion coefficient. At the stream-
wise station x == £ the driving force ¢ = ¢, — cw
abruptly changes from the value zero to unity
and remains constant thereafter, so that the
diffusion boundary layer (shown dashed) itself
grows under the influence of a constant driving
force #, = constant = 1 (for x > §). Let us
now focus our attention on the corresponding
rate of transfer, —j"(x, 0; £), to the surface
downstream of the step change and therefore
examine, in the absence of net mass transfer, the
normal gradient 80/0y evaluated at y = 0.
In what follows this gradient will be written
O,(x, 0; £€) as a reminder of its dependence on
both the position x and the upstream location
of the step change. Once one has obtained the
fundamental solution @y(x, 0; &) transfer rates
can be computed from the linear law

—J(%, 05 6) = Dple* Oy(x,0; §)  (7)

where, in this instance, #, = 1. As discussed by
Rubesin [1], Tribus and Klein, [2] et al., transfer
rates for arbitrary distributions of driving force
Pe(x) can then be calculated from the super-
position law

—J"(x, 0) = Dp [£_, O)(x,0; &) - di(£) (8)

where the fundamental solution discussed in the
present paper appears as a kernel and integration
is taken in the Stieltjes sense. It should be ob-
served that the fundamental solution may also
be presented in the form of a Nusselt number
based on the distance x; viz.

_ —J0:9)
Nus =5 5%

When ¢ — 0 we should therefore recover the
“iso-compositional” (constant driving force)
value of the Nusselt number, abbreviated here-
after as Nuiso.

As in the case of nonseparated flows the pre-
sent problem may be solved by use of the method
of similar solutions. This technique, suggested
by the absence of a characteristic length govern-
ing the development of the diffusion boundary
layer allows the problem to be reduced to the
solution of a simple ordinary differential equa-
tion, One thus anticipates a ‘““universal’ profile
®(n) from which the fundamental solution

=Xx-0yx,0; 8. 9
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O,(x, 0; & can be calculated using the value
of ©’(0) and the transformation properties of
the appropriate similarity variable »(x, y).

This may be carried out as follows. First the
convective diffusion equation is reduced to the
form of a variable property transient “conduc-
tion” equation by invoking the von Mises
transformation, i.e. by replacing the independent
variable y with the stream function ¥(x, y),
defined here by the relationst

¥ av 0
Voo (10)

In this way one obtains the partial differential
equation

00 1 7 (u 8@) (11

ox Pr o¥\v 8%
where Pr represents the diffusional Prandtl
number] v/D and the operator &/0x now im-
plies partial differentiation with respect to x,
holding the stream function ¥ constant. At this
point the local velocity u appearing on the right-
hand side of (11) must be expressed in terms of
x and ¥ alone, making use of the quadratic
law [cf. (3)] for nearly separated flows at large
Prandtl numbers. In terms of the characteristic
velocity v,.(x) defined above this profile law
may be cast in the form

U = v,(x) [E(_’:ll)]z

which, in turn, implies the stream function
dependence

(12)

(13)

Therefore in (11) the local velocity u(x, ¥) can

be expressed

u(x, ¥) = v,(x) - B¥)?3. (14)
+ The factor v (kinematic viscosity) is introduced in the
above equations to render the stream function ¥ dimen-
sionless.

1 In the Western literature this property group is
usually called the Schmidt number. This writer prefers
the usage common in the Russian mass transfer literature
since it does not obscure an obvious analogy. Similarly,
we have used the symbol Nu in place of the equivalent
Sherwood number.
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Inserting this expression into (11} yields the
partial differential equation

v 00 1 o 0@

— e Y —— 2/8
0 B P ¥ [(3% aaﬂ]'
Inspection of this result reveals that consider-
able formal simplification is possible by intro-

ducing the new *‘stretched” independent vari-
ables

(15)

X+ = J M (16)
£ v
P+ = 312 P Y, an

Doing this we are left with the partial differential
equation
00 0 06
P . +32/8
ox* 0P+ [(W ) a%]

which must be solved subject to the boundary
conditions

(18)

O=1for x*=0;al¥P* >0 (19
O =1for¥Pt=o00;al xt 20 (20)
@=0forP+=0;al x*>=0. (21

As anticipated, a solution to the above boundary
value problem can be constructed such that the
x+and ¥+ dependence of the ®-field is contained
in single independent variable n where a satis-
factory choice of 4 is found to bet

n = (9/16)1/4(x+)—1/4(1_[I+)1/3‘ (22)

In terms of the original independent variables of
the problem this is equivalent to the definition

_ % v*(i);{’ . pru/s UZ ﬁ*ﬁ%_gf} M' (23)

With any choice of this general form the boun-
dary conditions at x* = 0 and ¥* = co become

1 This property can-be arrived at by noticing that (18)
is invariant under the co-ordinate transformation
xt = Axt, ¥+ > /4 @+ In view of this fact and the
form of the boundary conditions (19, 20, 21) the solution
B(x+, ¥+) must also be invariant under this transforma-
tion. This condition will certainly be met if & depends
only upon a combination of the independent variables
x* and ¥+ which is itself invariant under this trans-
formation. Equation (22) represents ope such combina-
tion,

797

boundary conditions at y == oo i.e. (19, 20, 21)
are replaced by the two statements

B(c0) = 1, (24)

a@) = 0. 2%)

That a solution of the form B(z) exists may be

verified by subjecting (18) to the further co-

ordinate transformation (x*, ¥+) - (x*, 7).

In this way one finds that ©(x*, n) must satisfy
the equation

1 &0

i a7

i 20
iz
where the operator 6/0x* now implies partial
differentiation with respect to x* at constant .
Inspection of (26) reveals that a solution of the
form 6(z) indeed exists, where @(y) must satisfy

the linear second order ordinary differential
equation

26

ox+

4x+ (26)

0" + 4@ =0, @

This equation is first order in the first derivative
@’ and its solution is readily written in terms of
well tabulated functions. Integrating twice,
one obtains the expression

_Jiexp (=" -dy
J. exp(—n%-dn’
For diffusional transfer calculations the deriva-

tive ®’ evaluated at » == 0 is of interest. Equation
(28) implies

0°0) = [f” exp (—n%) - dn] .
The indefinite integrals appearing above. are

closely related to one of the incomplete gamma
functions [12, 13]

wa, x) = _{U" exp (—A) - A=-1dA.

() (28)

29

(30)

Tabular values of this function are provided in
the work of Pearson [13]. In terms of y(e, x) the
universal profile &(n) may be expressed
y(1/4, 7%

o) = i, ) G
where y(1/4, c0) = I'(1/4) = 3-62560991 [14]. A
graph of this function is given in Fig. 2 and com-
pared with the function y(1/3, 7%)/y(1/3, o) which
arises in the theory of nonseparated boundary
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Fi1G. 2. Universal diffusion boundary layer profiles.

layerst [9]. For small values of % we have the
expansion

@ o 4 _ fl I S Al_ 8 __ l 12
("J)'*—F(I/z)’?i 'g’? ™ 1877 78"7
1
16

so that @(0) = 4/I'(1/4) = 1-103262652. It is then
possible to find @,(x, 0; &) from €°(0) and the
transformation properties of the similarity
variable, since

{86\ A8\ (o
Oulx, 0:8) = (;9;,)— (dn) (Ej)y=o' (33)

Carrying out the indicated operations we find

Oy(x,0; §) =

2 174 V(%)
am rty

[ r v (%) - df] R

g 14
which constitutes the relation sought. This resuit
should be compared with its counterpart for

t For this problem Kestin and Persen [9] used a
similarity variable which is proportional to the cube of
our variable 5. This accounts for the infinite value of
&°(0) in their Fig. 2, which is removed in their calculation
of @, by the corresponding singularity of (&4/8¥)y—,.

nonseparated flow at large Prandtl numbers,
viz. [9]

@?I(xn 0; ‘g:) =
318 v, (%) [(%v.(x) - dx]-13
o0 Pris = Ug - j‘ . (3%

It should be remembered that in the latter case
the characteristic velocity v,(x) is the “friction
velocity” [7.,(x)/p]/* whereas in the former v, (x)
is given by (4). It is seen that in terms of these
respective characteristic velocities the funda-
mental solutions are strikingly simiiar in struc-
ture.

From a theoretical point of view application of
{34) to the well studied case of separated laminar
wedge flow immediately comes to mind. Such
an application not only provides results of greater
generality than those available in the form of
existing similar solutions, it also provides a
valuable check on the mathematical steps pre-
ceding (34). For example, in the limit ¢ -~ 0 we
should be able to recover the “isothermal”
value Nug 50 of the local Nusselt number for
separated wedge flow at very large Prandtl
numbers. However, before discussing this class
of applications, we digress for a moment to
illustrate the applicability of the well-known
integral (profile) method to the problem already
treated exactly in this section.
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3. COMPARISON WITH AN APPROXIMATE
FUNDAMENTAL SOLUTION; THE INTEGRAL
METHOD

Having an exact fundamental solution for the
case of separating flow it is of interest to examine
the success of integral methods when applied to
the same problem. For instance, it is known
that the von Kdrman-Pohlhausen approach with
a cubic polynomial ®-profile predicts the non-
separating flow fundamental solution for Pr > 1
to within 1-5 per cent of the exact value {15], and
correctly represents its functional form. We
therefore anticipate that integral methods will
be able to reproduce the functional form of (34)
however, it remains to be seen how well they
will predict the absolute value of the multiplica-
tive constant.

Integration of (6) from y = 0 to y = oo pro-
vides a relation for the growth of the “convec-
tion” thickness 4, defined by

©u
4, = L e [1 — 6]-dy. (36)

This integral relation for the boundary layer can
be cast in the general form (e.g. [16])

ue ddz 2 (06 42 du,
v dx = Pr\oy)y-e v odx
wed? d

—2

Ix (In 9y . (37)
In applying this relation to the present problem
the diffusional driving force is constant (at the
value unity) for x > ¢ so that the last term of
(37) can be dropped. Making use of the definition
of the local Nusselt number the simplified
integral equation may be written in the compact
form

Nu :x'Pr'g (lﬁ’é?)
dx\ v

In accordance with the von Karman-Pohi-
hausen procedure we first introduce a functional
form for the profile 8(y/8) where 6 represents the
yet undetermined thickness of the diffusion
boundary layer. Regardless of the choice of
functional form it is dimensionally clear that
0,(0) oc 61, The integral equation (38) then be-
comes an ordinary differential equation for the

(38)

growth of the diffusion boundary layer thickness
8(x; &) downstream of the point x = ¢ or, al-
ternatively, a differential equation for the decay
of the non-dimensional transfer coefficient
Nu(x; €. This will be illustrated here for the
case in which the local ©-field is represented by a
cubic polynomial, viz.

YT ,
@_5_(3)_2(3) for 0 < y/8 < 1. (39)

This functional form is simple to work with,
has zero slope at y/8 = 1, and satisfies the two
most important conditions of the problem, i.e.

0(x,0; 6 =0 (40)
O(x, 8; §) = 1. (41)

It is clear from this choice that @y(x, 0; £) and
8(x; &) are related by

3 1
Oy(x, 0; §) = 3% 42)
or, equivalently [cf. (9)]
3
Nu(x; ) =5 - 5. 43)

To parallel the development of the preceding
section we assume the diffusion layer grows in a
region within which the velocity profile u(x, y) is
well represented by the quadratic law given by
(12). Then, using its definition, the “convection
thickness” 4, may be evaluated as

* 7*82
a-rf)

Ue 14

J:M [1 = G A % xs)] dr 44

Performing the indicated operations and elimin-
ating the thickness 8 in favor of the nondimen-
sional transfer coefficient, Nu, we find
. 27 v, v, x\%2  x
192 u, Nu¥
Therefore, the integral equation, (38), can be
written

d 127 [v.x\3 1
N"zx"’"a}[m(‘?) N7]

4, (45)

v

(46)
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Differentiation and rearrangement yield the
following Bernoulli equation for Nu(x; §)

d d Uy X
a;c‘Nll — [CT;CIn( » )] Nu

1/192\ 1 /v, x\"2%1
[ Bt B B Z. 5
- 3(27)Pr(v) FRRCRINSL

Therefore, this equation becomes linear in the
dependent variable (Nu)~4, having the integrat-
ing factor (v.x/v)’. Subject to the condition
Nu(é; €) = oo this linear differential equation
can be integrated and solved for Nu(x; £). There
results

3727\ ve v, (x)x
— . /4 . _ T Y 7
Nu [4 (192)] pr ;

H’ (%) d"} s

£ v

Keeping in mind (9), one notices that (48) is
identical in form to (34), differing only in the
value of the multiplicative constant. Evaluation
of the fourth root shown in (48) vyields
0-5698767642 as compared with 2/I'(1/4) =
0-551631326. Thus the integral method using a
cubic polynomial profile reproduces the func-
tional form of the exact solution but overesti-
mates absolute values by some 3-3 per cent. This
error is more than twice that obtained in the
nonseparated flow case, suggesting once again
that for a given number of terms in the approxi-
mating polynomials the accuracy of profile
methods will in general deteriorate as one
approaches the condition of separation.

4, SPECIALIZATION TO SEPARATED WEDGE
FLOW

We return now to the exact fundamental
solution and its specialization to the case of
separated laminar wedge flow. Separated wedge
flow is a special case of the class of similar solu-
tions to the steady flow laminar boundary layer
equations for free stream velocity profiles of the
power law family u, oc x™ where m is a constant.
For this family exact solutions to the velocity
field are available in terms of a well tabulated
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nondimensional stream functiont f and its
derivatives [17, 18], where

. v 1 dUe 12
f = ( 8 H?) (49)
is a function of the similarity variable
1 du 1/2
y: (;B —d—x?) . (50)

The parameter 8 appearing in these transforma-
tions is a “‘wedge parameter” related to the
exponent m by B = 2m/(1 + m). For the singular
value B = —0-198838 (corresponding to m =
—0-09042867) the laminar velocity boundary
layer is separated (v, = 0) everywhere. Since the
normalized fluid velocity u/u, is simply given by
f’, where the prime denotes differentiation with
respect to the similarity variable (50), separation
corresponds to the case f(0) = 0. From the
definition of the characteristic velocity v,(x)
and the similarity variables above it is seen that
v.(x) is related to the corresponding magnitude
of /*(0); indeed, for the case of separated wedge
flow we explicitly find

1 13
U*(X) == ue(x) . [2—@-_—‘3) . Re;l .f/N (0)}

(51)

where B8 = —0-198838 and f’’(0) = 0-198838
[18].

4.1 Step change in driving force at x = ¢

Inserting this v, (x) distribution into the general
expression, (34), gives the explicit Nusselt
number result:

Nu 1 4 [f’"(O) 14
VRe; +/2—B) TI(1/4]| 4 ']

£\ @/3)(m+1)]-1/4
i (4T

If one now introduces the appropriate numerical
values of B, m and f/(0) for separated laminar
wedge flow (52) reduces to

f The stream function ¥ appearing in (49) is that
defined by (10). The product +¥ may be identified with the
stream function given, for example, by Evans [11] and
Spalding [18].
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Nuj+/Rey = 0-224468 Pria[l — (£/x)0808301]-1/4
(53)

which reduces further to the form of equation
(5) when £ - 0. For this special case the results
given above are in agreement with the accurate
solutions recently reported by Evans [11]. The
latter work further suggests that in practice (52)
may be extended to lower Prandtl numbers by
replacing I'(1/4) with the asymptotic series

0-0840531  0-00590720
T+ —p— = ""pn

0-000105923

—

+ O(Pr4). (54)

4.2. Power law driving force distribution

The superposition law expressed by (8) can be
combined with the results of the previous section
to derive an expression for the effect of power
law driving force distributions on the local
transfer coefficient. Thus we imagine that 9x)
obeys the power law d¢(x) oc x! where / is some
positive or negative constant. Introducing the
following kernetl into (8)

£\ @3 m+1)7]-1/4
) ] (55

1
Oy(x, 0; &) = Nuso “ [1 M(J—c

one thereby obtains the result

Dp’ﬂe(xz

—j"(x) = Nuiso
[J'(l) [I . A(2/3)(m+1)]—1/4 Al—l dA. (56)
The integral appearing here can be evaluated in

terms of the Gauss factorial function with the
help of the relations {12]

=) a4, eI
B A=A d = 15
(p—Dig—1!
R 7

where p, ¢ > 0.

Carrying this procedure through, the result
for the corresponding transfer coefficient ratio
can be written

! 1
Nu _ [(mxm + 1)} ' [ - KJ |
Nitzs I (58)
@23)m+1) 4]°

where m = —0-09042867. It is of interest to

compare this result with its counterpart for non-

separated wedge flows. In the latter case it can
be shown that

v _lemern) 3]t

T o3|

These explicit relations can be conveniently used
to evaluate the effect of the pressure gradient
(wedge) parameter m on the sensitivity of local
transfer coefficients to streamwise gradients in
diffusional driving force. Results are summarized
in Table 1 and Fig. 3. Also included for compari-
son are the numerical results of Levy [19]
calculated by a finite difference method for the
case Pr = 10, It is seen that small pressure gra-
dient flows are much more sensitive to steam-
wise gradients in diffusional driving force than
strongly accelerated flows. For instance one can
compare the magnitudes of / required to cause
the local heat flux to vanish, i.e. to “separate” the
O-profile, despite the presence of a non-zero
local driving force. This is done by noting when
the argument of the factorial functions in the
denominators of (58) and (59) take on the values
—1, since (—1)! = oo. Regardless of which
formula is used one obtains Nu/Nuss, = 0 for
= — (1/2¥m + 1) = —(2 — B)~! in agreement
with the results of Levy [19]. Since the requisite
gradient parameter /is observed to become larger
in absolute value as m increases, strongly ac-
celerating boundary layer flows (large m) are far
less sensitive to streamwise gradients in driving
force than are small pressure gradient flows
(m a2 0). In the separated flow case (58) reveals
that the local transfer coefficient will vanish
when the parameter / takes on the wvalue
—0-454786. This should be contrasted with the
case of plane stagnation flow (m = 1) for which
the value / = —1 is necessary to cause the local
transfer coefficient to vanish.

(59)
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Table \. Calculated values of Nu/Nuis,; comparison of analytical results for Pr > 1 with Levy's
numerical resultst for Pr = 10

B = —0-198838 B=20 ! B =1
! |
Equation (58) Levy? Equation (59} Levyt ; Equation (59) Levyt
—1-00 0-0000 0-0000
—0-75 | 04312 0-3159
—0-50 0-0000 0-0000 0-6845 0-6294
--0-25 0-7040 0-6707 0-6845 0-6344 } 0-8624 0-8406
0-00 1-0000 1-0000 1-0000 1-0000 ! 1-0000 1-0000
025 1-1693 1-1795 1:2092 1-2268 | 1-1129 1-1283
0-50 1-2906 1-3057 1-3689 1-3961 a 1-2092 1-2364
075 1-3856 1-5000 i 1-2937
100 1-4649 1-4862 16123 16476 1-3689 1-4137
1-50 1-5940 1-8000 1-5000
2:00 1-6978 1-7258 19556 1-9923 | 1-6123 1-6788
3.00 1-8616 1-8929 2:2091 22417 1-8000 1-8802
4-00 1-9910 20255 2-4151 2-4394 : 1-9556 2-0451
. i
+ Calculated for Pr = 10 from four place tables given by Levy [19].
20 T 1 1 1 LI T T !

— P e
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FiG. 3. Sensitivity of transfer coefficient to streamwise gradients in diffusional driving force for three values

of the Hartree wedge (pressure gradient) parameter.
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5. CONCLUDING REMARKS

By analogy with the corresponding non-
separated flow solution, two remarks should be
made concerning the restrictions placed on the
present solution. The restriction to very large
Prandtl number insures that the concentration
diffusion boundary layer will remain thin com-
pared with the velocity boundary layer thereby
justifying the use of a simple velocity profile,
(3), within the diffusion layer. If the Prandtl
number is not large the solution is still valid
for sufficiently small values of x* [cf. (16)] since
the diffusion layer is certainly “thin” initially.
Thus exact solutions for arbitrary Prandtl
number should tend to the present solution for
sufficiently small x+.

Secondly, in the extreme Pr — o0 or x* = 0
the solution may also be applicable to the case
of turbulent flow within the velocity boundary
layer provided Jaminar sublayers exist for
separated turbulent boundary layer profiles. If
this is the case then any general solution for the
tubulent case should become asymptotic to
(34) for sufficiently small values of x*.
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Résumé—En utilisant la méthode des solutions “4 similitude interne™ on établit une solution fonda-
mentale exacte de P'équation de diffusion convective dans le cas d’un écoulement sur une surface,
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avec nombre de Prandtl trés supérieur a I'unité. On suppose que les forces de diffusion varient brutale-
ment a partir de zéro, a 'abscisse x = ¢, la transformation de von Mises permet de tenir compte d’une
distribution arbitraire du parametre de courbure du profil de vitesses (8%u/8y?),_,. Une méthode
intégrale, utilisant une forme polynomiale du 3° ordre pour le profil de concentration sans dimensions,
aboutit 4 une forme correcte du coefficient d’échange mais donne des valeurs trop élevées de 3,39,
c’est-a-dire plus de deux fois 'erreur d’une solution donnée par la méthode intégrale dans le cas d’un
écoulement non décollé. Ceci suggére une fois de plus que, pour un nombre donné de termes dans
Papproximation polynomiale, la précision des méthodes de profils baisse au voisinage du décollement
de la couche limite.

Zusammenfassung—Mit Hilfe der Methode dhnlicher Lésungen erhilt man fiir sehr grosse Prandtl-
zahlen eine exakte Fundamentallosung der Gleichung der konvektiven Diffusion fiir Oberflichen-
stromung in der Néhe der Ablosung. Die treibende Kraft der Diffusion soll sich plotzlich von Null an
der Stelle x = ¢ in Stromungsrichtung dndern, wobei durch Beniitzung der von Mises-Transformation
eine beliebige Verteilung des Kriimmungsparameters des Geschwindigkeitsprofils (8%u/2y?),_, zuldssig
ist. Eine Integraimethode, diec dem dimensionslosen Konzentrationsprofil ein kubisches Polynom
zugrundelegt, fithrt auf die korrekte Funktionsform des Wirmeiibergangskoeffizienten, gibt aber
seine Grosse um 3,3 Prozent zu hoch an. Dieser Fehler ist mehr als doppelt so gross als der einer
Losung nach einer entsprechenden Integralmethode fiir die Stromung ohne Ablosung und zeigt
wieder einmal, dass fiir eine gegebene Anzahl von Gliedern im Néherungspolynom die Genauigkeit
der Profilmethoden im allgemeinen abnimmt bei Anndherung an die Ablosung. Die exakte Losung
beschrénkt sich auf den Fall laminarer Keilstromung in der Nibe der Ablosung; die Ubergangs-
koeffizienten sind sowohl fiir schrottweise Anderung als auch fiir Verteilung der treibenden Kraft
nach einem Potenzgesetz abgeleitet. Mit diesen Ergebnissen liess sich der Einfluss des Druckgradienten
(Keilvariable) auf die Empfindlichkeit des ortlichen Ubergangskoeffizienten mit den Gradienten der
treibenden Kraft in Stromungsrichtung vergleichen. Im Grenzfall sind die Ergebnisse fiir schrittweise
Anderung der treibenden Kraft auf den entsprechenden “isothermen” Koeffizienten fiir sehr grosse
Prandtlzahlen reduzierbar.

Annoranua—IJlony4eno ¢ nomompo MeToa MOAOOHHX peuleHnlt ToYHOoe QyHIAMeHTAILHOE
pellleHue YPABHEHWA A KOHBEKTUBHOM [MPPYy3MU [IA CIyyas OTPHIBHOrO TeUYeHUH Ha
MOBEPXHOCTH npn uncie IIpanATIs 3HAUNTENBHO IpeBhITaomeM efnunily. [Ipegnonaraercs,
4TO BeJMYMHA 6e3pasMepHONl KOHIeHTPal! BHE3AIIHO U3MEHACTCA B TOUKE X = § OT HYJIA [0
eNMHUIE U YTO paclpefeneHue mapamerpa (9%u/dy*)y_, KPUBUBHH HPOPUIA CKOPOCTH
ompefensAeTCA C NMOMOMbI0 npeoOpasosanna (o Museca. Ilokasamo, 4To WMHTErpaJbHBIM
MeTOX, MCHOJAL3Y oMt KyGuuecKuit noauEOM A GeapasMepHOro Npoduas KOHIEHTPAUUN,
oIpefienfdeT IPABIIBHYI QYHKINOHAIbHYIO (opMy koadduimeHTa MACCOOOMEHa, HO
3aBHIIIAET ero BeJUWIMHy Ha 3,3 %,. OT0o B [IBa pasa IPEBOCXOTUT OLIMOKY COOTBETCTBYIOUIETO
peLieHysa ¢ IOMOINBI0 MHTErPAJBbHOI0 METO/a LIS 3aKaun 6e30TphBHOrO TeueHusi. Ilpu atom
NPMHUMAETCA, YTO A AAHHOTO YMCIA YIEHOB AINMMTPOKCHMMMPYIOINETO TIOJMHOMA TOYHOCTH
VKA3aHHBIX METOJOB, B 00IIeM, yXyAinaercd BOIN3M OTPHA CKOPOCTHOTO NMOTPAHAUYHOTO CJIOA.

Tounoe pellleHHe IPUMEHEHO K CIy4Yaio OTPHIBHOTO 00TeKAHMA KINHA JAMUHAPHBIM MOTO-
koM. KoaddunumenTr nepesoca BEIBe/leHH KaK A CTYIIEHYATON0 pacnpefieeHus ABIKYIen
CHIIBL, TAK M [JIA CTElEHHOI'O 33aKOHA e€ H3MeHeHNA. PesynbTarThl MCIIOIB3OBAIMCH IJIH
CPABHEHMS BIMAHNA IPAJIMEHTA AABICHUA (PACTBOD KIWHA) HA YYBCTBUTEIHHOCT: JORATBHBIX
1®0aPUUNEHTOB NMepeHoca K IPaJiMeHTaM JABIKyLle# cHIEL (Ge3pasMepHON KOHIEHTDAIIM).
B 3aKIi09eHNN TIOKA3aHO, YTO CTYNEeHYaTOoe M3MeHeHHe ABIGKYIHeH CHIBl yMeHBIIAeT MCTHH-
HBIIE «M30TepMUYeCKuily Ko3(PuuMeHT HepeHoca IpH BechMa OoabiuX umciax IIpampTas.



